Telegram Group & Telegram Channel
Large Language Models as Optimizers [2023]

Формулировка промпта серьёзно влияет на качество работы LLM. Именно здесь был найден тот самый "Take a deep breath and work on this problem step-by-step", дающий хорошую производительность. Попробуем разобраться в этой работе.

Авторы формулируют технику Optimization by PROmpting (OPRO), использующую LLM в качестве оптимизатора. На вход модели подаётся следующее:
1) Мета-промпт - описание, что и зачем оптимизируем. Вся полезная информация о задаче.
2) Пары "решение - скор". В ходе оптимизации будут генерироваться новые кандидаты. Все кандидаты сортируем по скору и добавляем топ лучших пар в этот вход

Далее мы запускаем эту штуку много раз и получаем всё более и более крутых кандидатов. Применять это можно в теории к чему угодно, хоть вместо градиентного спуска использовать. Но преимущество данного метода в том, что для него естественно языковое пространство, поэтому его используют для оптимизации промпта. Получается схема на картинке.

Из хорошего - промпт, генерируемый для определённой LLM на одном датасете, хорошо переносится на другой. Из плохого - промпты, хорошо работающие для одной LLM, не обязательно работают хорошо для другой LLM. Интересна природа таких отличий, ведь их претрейн должен быть +- похож, а вот дообучение на Human Feedback уже нет. Есть ли там хоть какая-то связь или это чистая случайность?

Возникает и другой вопрос - какова роль именно LLM в качестве оптимизатора? Вряд ли она в себе содержит представление о том, как разные конкретные LLM буду работать при разных промптах. Насколько такой оптимизатор является "умным", насколько он далёк от случайного перебора промптов?

Так или иначе, вновь мы видим доминацию оптимизации над человеческим проектированием. Возможно, какая-то большая и сложная оптимизация поверх LLM даст интересные плоды, но проблема в том, что сама LLM - очень большой вычислительный кусок, и его внутренности и обучение никак не оптимизируются. Но мы когда-нибудь заменим и их, тогда точно заживём.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/164
Create:
Last Update:

Large Language Models as Optimizers [2023]

Формулировка промпта серьёзно влияет на качество работы LLM. Именно здесь был найден тот самый "Take a deep breath and work on this problem step-by-step", дающий хорошую производительность. Попробуем разобраться в этой работе.

Авторы формулируют технику Optimization by PROmpting (OPRO), использующую LLM в качестве оптимизатора. На вход модели подаётся следующее:
1) Мета-промпт - описание, что и зачем оптимизируем. Вся полезная информация о задаче.
2) Пары "решение - скор". В ходе оптимизации будут генерироваться новые кандидаты. Все кандидаты сортируем по скору и добавляем топ лучших пар в этот вход

Далее мы запускаем эту штуку много раз и получаем всё более и более крутых кандидатов. Применять это можно в теории к чему угодно, хоть вместо градиентного спуска использовать. Но преимущество данного метода в том, что для него естественно языковое пространство, поэтому его используют для оптимизации промпта. Получается схема на картинке.

Из хорошего - промпт, генерируемый для определённой LLM на одном датасете, хорошо переносится на другой. Из плохого - промпты, хорошо работающие для одной LLM, не обязательно работают хорошо для другой LLM. Интересна природа таких отличий, ведь их претрейн должен быть +- похож, а вот дообучение на Human Feedback уже нет. Есть ли там хоть какая-то связь или это чистая случайность?

Возникает и другой вопрос - какова роль именно LLM в качестве оптимизатора? Вряд ли она в себе содержит представление о том, как разные конкретные LLM буду работать при разных промптах. Насколько такой оптимизатор является "умным", насколько он далёк от случайного перебора промптов?

Так или иначе, вновь мы видим доминацию оптимизации над человеческим проектированием. Возможно, какая-то большая и сложная оптимизация поверх LLM даст интересные плоды, но проблема в том, что сама LLM - очень большой вычислительный кусок, и его внутренности и обучение никак не оптимизируются. Но мы когда-нибудь заменим и их, тогда точно заживём.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/164

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

How To Find Channels On Telegram?

There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.

China’s stock markets are some of the largest in the world, with total market capitalization reaching RMB 79 trillion (US$12.2 trillion) in 2020. China’s stock markets are seen as a crucial tool for driving economic growth, in particular for financing the country’s rapidly growing high-tech sectors.Although traditionally closed off to overseas investors, China’s financial markets have gradually been loosening restrictions over the past couple of decades. At the same time, reforms have sought to make it easier for Chinese companies to list on onshore stock exchanges, and new programs have been launched in attempts to lure some of China’s most coveted overseas-listed companies back to the country.

Knowledge Accumulator from ua


Telegram Knowledge Accumulator
FROM USA